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Abstract

In the design of controllers to suppress unwanted vibration in a flexible spacecraft

structure, a nominal model of the system is assumed. Since this design model can only

represent the real structure up to a certain level of accuracy, any response predicted by the

model is subject to errors that need to be quantified. One such characterization is the

probability of the system failing to meet a certain level of performance when the design

model is subject to stochastic uncertainties described by certain statistics. Since the direct

relationship between the (stochastic) uncertainties in the design model and the resultant

responses is very complicated, analytical prediction approaches tend to be limited because

many simplifying assumptions must be made to make the problem mathematically tractable.

Stochastic robustness analysis via Monte Carlo evaluations can be used to address such a

difficulty by converting the stochastic prediction problem into a statistical sampling problem

where basic and well-tested principles of probability theory apply. The empirical nature of

the procedure eliminates the need for simplifying assumptions. At the same time, however,

the empirical results can be shown to obey certain general analytical relationships which

allow precise interpretation of the results. This research examines the problem of

characterizing the expected vibration level in a flexible structure under periodic disturbances

when the parameters in the model are subject to stochastic uncertainties. Analytical

expressions describing the statistics of the stochastic estimation is derived. Practical results

such as the probabilities of the actual vibration amplitudes failing to meet various threshold

levels are obtained together with their associated error bounds. An example will be used to

illustrate the application of such a stochastic prediction procedure.



Introduction

Periodic disturbance is a major cause of vibrations in a flexible structure. On a

spacecraft structure, for example, the disturbance is caused by a particular on-board device

performing a periodic scanning motion. The vibrations will be felt by other scientific

instruments mounted on the same structure. At the design stage, it is important to quantify

the levels of such vibrations in order to determine whether or not there is a need for active

control to suppress such periodic disturbances. Typically, only a design (analytical) model

of the system is available whose parameters represent those of the real structure up to only

a certain level of accuracy. Any response predicted by the model is thus subject to errors

that need to be quantified. Should this analysis reveal the need for active control, it is

necessary to assess the performance of a particular controller design in the presence of

uncertainty in the design model itself. In one case one may be concerned with stability

robustness to make sure that the system remains stable in the presence of modeling errors.

In another case, performance is a critical issue and one is concerned with the ability of the

controller to maintain a certain specified performance goal. These robustness issues are

particularly critical for model-based vibration suppression controllers where errors in the

design model may result in undesirable effects such as actual amplification rather than

attenuation of the periodic disturbances or at worst instability itself. Again, to address

these issues adequately, it is important to be able to quantify as precisely as possible how

the system stability or performance is affected by the presence of uncertainties in the design

model.

This research considers the case where the flexible structure is affected by a

persistent disturbance source. The objective the stochastic estimation problem is to

determine the expected vibration levels when the parameters in the model are not known

accurately but their statistics can be reasonably assumed. For simplicity, the disturbance is
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assumedto be knownbut theapproachpresentedhereis equally applicableto thecase

whereuncertaintyin thedisturbanceispresent.Theability toestimatethesystemvibration

givenuncertaintiesthatarenot necessarilyspecifiedin thedesignof aparticularcontroller

will provideinsightsasto howit isexpectedto functionin practice.This ability helpsone

to evaluateoreliminateparticularcontrollerdesigns.

Analytical solutionsto a stochasticestimationproblemsuchastheoneconsidered

herearequitedifficult. Theprocesstendsto requirestringentassumptionson thedynamic

processandsimplifyingassumptionsmustbemadeto makethemathematicsrelativelyeasy

to handle.Sensitivityanalysiscanbeusedtopredicttheprobabilityof instabilityasshown

in Refs. 1-4. For a linearsystem,sensitivityof the closed-loopeigenvaluesis usedasa

measure of (in)stability. The sameproblem can be approachednumerically (or

statistically),which involvesrandomsamplingof the uncertainparametersaccordingto

their specifieddistributionsandthenobtainingthestatisticsof theinterestedquantitiesfrom

the sampledresults. This is knownasMonteCarlomethod,which is oftenusedin safety

assessmentor reliability engineering,Ref. 5-7. In contrastto theanalyticalapproach,the

numericalmethodis flexiblein thatthedistributionsof theuncertainparametersneednotbe

assumedto beGaussianor uncorrelated,thesystemneednotbe linear,andanymeasureof

stabilityor performancecanbeused.In returnfor this flexibility, computationalexpenseis

incurred. Recently,this method, known as stochasticrobustnessanalysis,hasbeen

adoptedfor useto evaluatestability andperformancerobustnessof control systemsand

shownto bewithin the scopeof modemcomputers,Refs.8-11. This researchconsiders

its application to the problem of characterizingstructural vibration under periodic

disturbancein thepresenceof stochasticuncertaintiesin thedesignmodel. Themodelcan

be either a closed-loopmodel or anopen-loopmodel dependingwhether a feedback

controllerispresent.For aflexible spacecraftstructure,themulti-modemodelis typically

derivedfrom a finite elementor systemidentificationmethod. The MonteCarlo-based



predictionapproachreliesonafundamentalprincipleof probabilitythatgivenasufficiently

largenumberof samples,it is possibleto deducethestatisticsof theunderlyingprocess.It

is not necessaryto makeanexhaustivesearchbeforesomedefinite statementsaboutthe

statisticsof the underlyingprocesscanbe made,althoughthe estimationwill become

increasinglymoreaccurateasmoresamplesaretaken.Furthermore,for processessuchas

thosesatisfyinga binomialdistributionsuchasthecaseconsideredhere,it canbeshown

that the overall statisticsobey certain generalrules without regard to the number of

uncertainfactorsinfluencingtheoutcomeof eachsamplein thefirst place. In this research,

a Gaussian function is used to approximate the binomial distribution so that analytical

relations describing the statistics of the underlying process can be explicitly derived. These

analytical results allow one to move beyond obtaining merely an estimated probability from

a set of samples, but also rigorous confidence bounds on the actual underlying probability

of the process. This is a very important feature of a Monte-Carlo based estimation

approach that is often under-appreciated because at times it may appear counter-intuitive.

Furthermore, the effects of any specified parameter variations on any response variable of

interest can be directly analyzed for any the disturbance-to-response model. The method

returns a set of "user-friendly" measures of the probability of the vibration exceeding

various levels, and expected response envelope. The associated probability density

function and confidence intervals for other variables of interest, such as the system natural

frequencies and damping factors, can be similarly obtained. Numerical examples will be

presented to illustrate the applicability of such results.

Finally, it is worth mentioning that statistical prediction has been routinely used in

many other fields other than engineering risk and reliablity assessment. One example is the

prediction who is expected to win in a presidential election based on exit poll which

constitutes a tiny fraction of the voting population. Exit polls, although not perfect, tend to

be quite accurate yet the number of factors that influence a person's decision is quite
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numerous. Another exampleis theestimationof the percentageof the population that

survivesby theage of 65. Therearecountlessfactorsthat affect the life spanof each

individual yet the resultantstatisticsfrom a sampledpopulationis sufficiently good to

supportthetypicallyhealthylife insuranceindustry.

Analysis of Stochastic Vibrations by Monte Carlo Evaluation

Consider a linear time invariant system of the form

dx

dt A(O)x(t)+ Bt(O)u(t)+ B2(O)v(t) (1)

y(t) = C(O)x(t)

where x(t) denotes the state vector, y(t) the output vector, u(t) the control input, and v(t)

the disturbance input to the system. The system matrices are denoted by A(0), B_(0),

B 2(0), and C(0) which are continuous functions of the uncertain parameters in the vector

0. The control input influences the system via a state feedback controller, say

u(t) = Gx(t) (2)

The closed-loop system is then governed by the set of equations

tt = (A(0) + B_(O)G)x(t) + B2(O)v(t)

y(t) = C(O)x(t)

(3)

For generality we have included both control input and disturbance input in the above

model. If there is no control and we are only interested in the system open-loop response

subject to uncertainties in the design model, then G = 0. It is assumed that the implicit



relationshipbetweentheuncertainparametersvector0 and the rest of the model is known

from a computational viewpoint, i.e., given a set of uncertain parameters it is possible to

compute the corresponding system model A(0), B_(0), B2(0), and C(0). For ease of

presentation, the disturbance v(t) is also assumed to be known although uncertainties in the

disturbance itself can be treated similarly. The uncertain parameters in 0 are not known

precisely except for their statistics specified by their probability density functions pdf(O i)

for i= 1,2 .... up to the number of uncertain parameters. In the spacecraft vibration

problem, one wishes to predict the levels of stochastic jitter caused by such disturbances in

the presence of the specified stochastic parameter uncertainties. For simplicity of

explanation, the magnitude of the steady state response is used as a variable of interest

although more sophisticated measures of vibration can be used. Each Monte Carlo run is

initiated based on a random generation of the uncertain parameters satisfying the prescribed

statistics. To simplify the discussion further, only the maximum amplitude y = lym lof the

each steady state response corresponding to each run is saved for statistical analysis.

Estimation of the statistics of the Monte Carlo evaluations:

The first and most obvious step in the analysis is an examination of the statistics of

the results obtained from n Monte Carlo runs, which for the current consideration, consists

of n values of lym l. Since the uncertain parameters in the system are continuous random

variables, the resultant maximum response is a continuous random variable whose statistics

can be described by its probability density function. The difficulty in constructing the

density function of a continuous random variable using a finite amount of data (n points in

this case) is that the data appear to be discrete. To resolve this problem, the continuous

random variable is first converted into a discrete one by segmenting the response into non-

overlapping equal intervals Ay. The fraction of measurements in y falling in each

respective interval is simply the ratio



N(y__ 1 < y < y_)

where N(yi_ 1 < y < Yi) denotes the number of times the maximum amplitude of the

response fall between Yi-i and yi = Yi-i + Ay, i = 0,1,2 ..... To approximate the probability

density function /3(y) of the original continuous random variable y = ly l, a histogram

can be constructed such that the area of each rectangular column in the histogram records

the fraction of measurements falling in each respective interval. Thus an estimated

probability density function is computed from

/3(Yi-i < Y < Yi) = N(yi-t < y < Yi) (4)
n(Ay)

Here the notation /3(.) is used to denote an estimated probability for the truly correct

underlying probability p(.). By examining the shape of the approximated density function

of the maximum response, one has a general picture of overall statistics of the responses

collected from n Monte Carlo runs. From /3(Yi-_ < Y < Y_), the corresponding cumulative

distribution function /3(y < y_) can be computed as

i

/3(y< y_) = E(Ay)/3(y,_, < y < y,) (5)
'_=1

It is known that as the number of data points tends to infinity, the law of large

number applies, which will result in the estimated distribution converging to the limiting

distribution. In practice it is impossible to have an infinite number of measurements. In

the following sections, however, it will be shown that it is possible to quantify precisely

how fast one can expect to have the approximated distribution converge to the limiting

distribution as a function of the number of Monte Carlo runs.
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Estimation of the probability of the response exceeding a certain limit:

A reasonable (and practical) question to ask is the probability of the response

exceeding a certain specified level, beyond which is considered unacceptable. An

estimation of the probability of the maximum response y exceeding a certain level Yi,

denoted by /3(y > yi), is computed from

_(y > y_) = N(y > y,) (6)

where n denotes the total number of Monte Carlo runs and N(y > Yi) denotes the number

of runs where the limit y_ is exceeded. Note that this information is already available from

the cumulative distribution estimated in the previous section as

/3(y > y,) = 1 -/3(y < y_) (7)

which provides the (estimated) probability of the response exceeding not just a single limit

but for any limit y_.

In the previous section, we estimated the statistics of the maximum response

amplitude where y = lYma lis treated as a random variable. This is only the first step in the

analysis. For each value y_ there exists a truly correct (unknown) underlying probability

p(y > y_) which exists independently of any number of Monte Carlo runs made. We can

estimate this value of p(y > y_) by Eq. (6) or Eq. (7) increasingly accurately if we could

make infinitely many Monte Carlo runs. In practice since only afinite number of runs can

be made, our estimated /3(y > y_) is only approximately true. The next step in the analysis

is to examine the statistics of/3(y > yi) itself where /3(y > y;) is now considered as a

random variable.
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Estimation of the distribution for /3(Y>Yi)

Recall that there are n independent runs where n values of [YmaxJ are recorded. Out

of these n values, the number of runs whose responses exceed the limit is N(y > yi) which

can now be considered a random variable because if we are to conduct several n Monte

Carlo runs then N(y > y_)will be different each time. The possible values of N(y > y_) are

0,1,2 ..... n, and as mentioned previously, the ratio for t3 given in Eq. (6) or (7) gives the

estimated probability of exceeding the limit y_. If n is large then /3 will be close to the true

probability of exceeding the limit p. When n is not sufficiently large, the estimation /3 will

fluctuate. It is therefore important to find the distribution of/3.

First, note that the values of/3 are fractional, but values of N(y > ya) are integers.

Also, the probability of/3 taking the value say k/n is the same as the probability of

N(y > Yi) taking the value k. Therefore it is more convenient to find the distribution of/3

from the distribution of N(y > yi), which specifies the probability of getting 0,1,2 .... up

to (at most) n limit-exceeding responses in n runs. One way to obtain this distribution is by

repeating the n independent runs m times where m is a sufficiently large number. It is both

unrealistic and necessary to do so. Recognizing that each run is a Bernoulli trial (a

Bernoulli trial is one that has only two possible outcomes, namely, the result of each run is

that either the maximum response exceeds the limit or it does not exceed the limit), the

probability for N(y > yi) to take a particular value k follows a (discrete) binomial

distribution ( N(y > y_) is a discrete random variable),

k = 0,1 ..... n (8)

where (_3 denotes the binomial coefficient,



(9)

Also, recallthatprobabilityof N(y > Yi) taking the value k is the same as the probability of

/3 taking the value say k / n, i.e.,

p[N(y > yi)= k] = p[/3(y >_y,)= k I n] (10)

The computation of the binomial coefficient is quite tedious. Numerical overflows

occurs for n > 170 on a typical computer. Fortunately, it is known the binomial

distribution can be approximated by a Gaussian function which is briefly described below.

In this research, we will use this approximation in the subsequent analysis.

Approximation of Binomial Distribution by a Gaussian Function

For n larger than 50 the binomial distribution can be closely approximated by a

Gaussian function fx.o(k)

(n'_

- _ e-(k-X)V2"; =- fx,,,, (k)

(11)

with mean X and variance c x,

X=np, CSx=_!np(1-p) (12)

The Gaussian approximation is symmetric about p, implying that the mean value is also the

most probable value. Unlike its Gaussian approximation, the binomial distribution is only
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symmetricfor p = 0.5. For n larger than 50, however, this non-symmetry is no longer

pronounced, and for all practical purposes, the binomial distribution can then be

approximated by a Gaussian approximation. In our particular application, n is the number

of Monte Carlo runs which is typically several orders of magnitudes larger than 50, the

Gaussian approximation fx.o (k) is quite adequate.

Note that the original binomial distribution is discrete. For each value of k, the

height of the distribution is p[N(y > Yi) = k] records the actual probability of getting k

limit-exceeding cases in n Monte Carlo runs. The Gaussian approximation, however, is a

continuous function which treats k as a continuous random variable while it is in fact a

discrete one. Certain conceptual difficulties may arise due to a fundamental difference

between discrete and continuous variables. Namely, for a discrete random variable,

p[N(y > yi) = k] is not necessarily zero for some k but for a continuous random variable,

p[N(y > Yi) = k] must be zero for all k. For this reason care must be taken to interpret

various operations involving the continuous Gaussian approximation of a discrete

distribution. Specifically, there are two applications of this approximation which deserve

special clarification to avoid possible confusion: First, the Gaussian function can be used

to compute the probability of getting a certain number of k limit-exceeding cases in n Monte

Carlo runs. In this case, the Gaussian function should be viewed only as a numerical

approximation of the binomial coefficient, not a continuous distribution. Second, because

the increment in the k-axis is 1, the Gaussian function can also be viewed as if it is a

continuous distribution of a continuous random variable k for the purpose of computing

various probabilities. The following example illustrates this point. The probabilities of

getting between k_ and k 2 limit-exceeding cases can be correctly obtained by summing

probabilities of getting between k_ and k2 limit-exceeding cases specified by the discrete

binomial distribution. Since the computing the binomial coefficients is numerically

inconvenient for large n, this answer can be approximated by computing the area under the
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Gaussiancurvebetweenk_ and k2 treating k as a continuous random variable. This is

possible because the integral can be approximated by summing up the appropriate

rectangular areas under the curve (using the rectangular approximation to the integral).

Since each of the rectangle has a width of 1 unit (because each increment in the k-axis is 1),

the area under the curve is numerically the same as the sum of the heights of the

corresponding rectangles. Since each height measures the probability of getting k-limit

exceeding cases in n runs, this integral approximates the actual probability of getting

between k1 and k 2 limit-exceeding cases as specified by the original discrete binomial

distribution. Furthermore, the approximation will become quite good for sufficiently large

n as it is the case in our application. We will take advantage of this observation to use the

Gaussian approximation to obtain various expressions for the confidence intervals

regarding the statistics of the probabilistic estimates. This task is shown in the following

sections.

Confidence interval for ,b

One key observation of the binomial distribution governing the statistics of the

stochastic sampling process is that it is completely specified by the underlying probability p

and the number of Monte Carlo runs n. Let us first make a few qualitative observations of

the distributions and their subsequent implications. More rigorous results will be presented

later. Consider three distributions having the same value of n = 100 but with different

p = 0.05, 0.5, and 0.95. Note that the "width" of the distribution is symmetrical with

respect to the axis p = 0.5. For 0 < p < 0.5, this width is smaller as p approaches 0. The

same applies for 0.5 < p < 1 as p approaches 1. Consider a particular case, say p = 0.5.

The distribution is centered at the true underlying probability p = 0.5. For an underlying

probability of 50%, one can expect with a very high degree of confidence that with 100

Monte Carlo runs the estimated probability of the system response exceeding a certain limit

falls between 0.3 and 0.7. Equivalently, it is unlikely that the statistics obtained from 100
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MonteCarlorunswill yielda resultoutsidethis rangeif thetrueunderlyingprobability is

50%. Onequestionthatimmediatelyarisesis: will thewidth of thedistributionnarrowsif

the number of Monte Carlo runs is increased.'?The answeris definitely yes. With

increasingnumberof MonteCarloruns,thewidth of thedistributionbecomesnarrower,

implying thattheestimatedprobabilityof exceedingacertainlimit isevenmorelikely to be

closeto thetrue underlyingprobability. In thefollowing, wequantifytheseobservations

by providinganalyticalexpressionsfor themusingthenotionof aconfidenceinterval.

Let usconsiderthecasewherethe underlyingprobabilityof exceedinga certain

limit Yi is p(y > Yi) or p for short, and the number of Monte Carlo runs is n. As

established earlier, p and n completely define the distribution of getting a certain number of

limit-exceeding cases denoted by N(y>yi)in n runs. This distribution can be

approximated by a Gaussian function fx.o,, (k) with the mean X and standard deviation

_x. For a Gaussian distribution, the standard deviation _x corresponds to a 68%

confidence level, i.e., there is a 68% probability that the number of limit-exceeding

responses N(y >_Yi) falling between X - _x and X + _x

X-g x < N(y>yi) <_X+_ x (13)

This confidence level is the probability denoted by P and given by the expression

X-o X

1 [ e -(k-x)2/2ax2 dk
P(X-_ x < N < X +_x)= _x_-_ x._._

= l____lfe-zU2dz

_/2rt J__

(14)

where N is used as a short hand notation for N(y > y_). The simplification is obtained by a

change of variable from _, to z, (_,-X)/a x = z, which simplifies the problem
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considerablyby makingtheexpressionindependentof a x and X, which in turns depend

on n and p. Equation (14) can be generalized for any specified value of confidence level

for N(y > y_) falling between X - ocx and X + otx for any value of _xx = ta x as

t

P(X - ocx < N < X + ocx) =_ Se-z:/Zd_, -- erf(t) (15)
-t

The error function or P = erf(t), or its inverse t = erf-_(P), is commonly tabulated in

standard statistics.

To convert the above results obtained for N (the number of cases the response

exceeds the limit out of n Monte Carlo runs) to /3 (the estimated probability of such

occurrence), one only need to divide the results by n. Since,

N X
/3=--, p=-- (16)

n r/

It follows that X - ot x < N(y > y_) < X + ct x also implies p - oc </3(y > y_) < p + _ or

P(X-oc x < N< X +OCx)=P(p-oc </3 < p+ot) (17)

provided c_x = nR, where we have used the short hand notation /3 for/3(y > y_). Hence,

ocx _ ta x t_/np(1 - p)

n n n

= t_lp(1 - p)/n

= erf-' (P)4p(1 - p)/n

(18)
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The difference (p + _)- (p - ct) = 2ct is the width of the distribution associated with a

confidence limit specified by P = erf(t). In short, with n Monte Carlo runs, if the true

underlying probability of exceeding a certain limit Yi is p, then there is a lOOP %

probability that the estimated probability /3 ofp will fall between p - o_ and p + t_, where

ct = erf -_ (P)_/p(1- p)/n. Note that the Gaussian function is being used to approximate

the underlying binomial distribution and this approximation is taken to be valid for n > 50.

Given a value of the underlying probability p, the width of the desired confidence

interval 2ct, and the desired confidence limit P, one can compute the number of Monte

Carlo runs required as

n=[ rf ( )](tej-'.P. 2p,1 -p) (19)
Ot2

Similarly, for each value of the underlying probability p, the width of confidence interval

2it, and the number of Monte Carlo runs n, the expression for the expected confidence

level is given by

]P = e ,x/p(l _ p)/n
(20)

This analysis can be carried out without regard to the number of uncertain

parameters in the system. This is a remarkable feature of the discrete binomial distribution

under consideration that allows us to make rigorous statements about the nature of the

problem and the confidence of the approximation.
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Confidence Charts

Equation(18)definestherangethatanestimatedprobability /3 must lie within a

specified confidence level P given the number of Monte Carlo runs n and the actual

underlying probability p, i.e., p - t:t _</3 _<p+ ct, o_= _(P,p,n). Thus for each desired

confidence level specified by P, constant P-surfaces of ot = _(P,p,n) can be generated.

Figure 1 shows two surfaces with confidence levels P equal to 68% and 99.9%. Notice

that each constant P-surface is symmetric about the plane p = 0.50 and the bound t_

diminishes rapidly as the number of Monte Carlo runs increases. To view the effect in

more details, various projections of the above surface plots can be generated. For

particular confidence level P, plots of o_ versus n corresponding to various values ofp can

be generated. Figure 2 shows a family of such curves for p = 50%, 10%, 1%, and 0.1%

at a confidence level P = 95.5%. Logarithmic scale is used for clarity. In a similar fashion

for a particular confidence level, one can also construct plots of o_ versus p for various

values of n. This is shown in Fig. 3 where n = 100, 1000, 10000, and lO000 at a

confidence level of 95.5%. These charts together provide a general picture of the overall

statistics governing the stochastic estimation process that may not be as evident from an

equation alone.

Bounds on the Underlying Limit-Exceeding Probability p

The above analysis determines the width of the confidence interval associated with

each value of the true underlying probability of exceeding a certain limit. The analysis

yields a global picture of the statistics of the estimated result based on a certain number of

Monte Carlo runs. Among other things, associated with each value of the underlying

probability, it clearly describes how the width of the confidence interval diminishes as the

number of Monte Carlo runs increases. In reality, however, the true value of the

underlying probability is not known. This fact will introduce further uncertainty in the

interpretation of the result. The following example illustrates this point. Let us consider
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thefollowing two caseswhereone evaluates n = 1000 Monte Carlo runs and the desired

confidence level is 99.7%, i.e., P= 0.997. First, consider the case where the true

underlying probability p_ =0.05 or 5%. It can be computed from Eq. (18) that

_ = 0.020 or 2%. Thus, there is a 99.7% probability that an estimated probability of

exceeding a certain limit denoted by /3 computed from 1000 Monte Carlo runs will fall

between 3% and 7% (Pl -0q = 0.03 and p_ + _ = 0.07). Equivalently, the probability of

/3 falling outside this range is 0.03%. Second, examine the case where the true underlying

probability P2 = 8%. From Eq. (18), o_2 = 0.025, which implies that there is also a

99.7% probability that an estimated /3 will fall between P2 -°_2 = 0.055 or 5.5% and

P2 + 0_2 = 0.105 or 10.5%. Let us suppose that with 1000 Monte Carlo runs, we compute

/3 and it happen to be 4%. Subject to a 99.7% confidence level, between the two choices it

is more likely that the true underlying probability of the process is 5% rather than 8%

because 0.04 falls within the range [0.03, 0.07] associated with p_ = 0.05 but not

[0.055, 0.105] associated with P2 = 0.08. A more complicated situation will arise if the

estimated probability /3 turns out to be 6% which falls within both the ranges [0.03, 0.07]

and [0.055, 0.105]. This situation points out the need to carry the analysis one step further

to establish the upper and lower bounds on the true underlying probability p given a value

of the estimated probability /3. Again, it is important to emphasize that such a bound on p

is based on the estimated probability /3 rather than the true underlying probability p as done

previously. The establishment of such bounds is done below.

Suppose a desired confidence level P is given and p is the (unknown) underlying

probability of exceeding a certain limit. From n Monte Carlo runs, suppose that /3 is an

estimated value of p. For every value of/3 within this confidence level, the underlying

probability p must be bounded from below by Prmn and above by Pmax, where

Pmin =/3 - O_minand Pmax =/3 + _max, i.e.,
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Pmin =/3--t_mi. --<P < /3+Otma_ =Pm_x (21)

The lower bound PmJ. and upper bound Pm_x must satisfy the following relationships

O_mi n "-- p -- p_.=erf-'(P)_/p,m.(1 pmi.)/n (22)

_m_ = Pm_x - /3=erf-l(P)4Pm_x(1- Pmax)/n (23)

Making use of these relationship one can solve for the lower bound pr_n and the upper

bound Pmax in terms of/3, P, and n. To solve for Pm_, from Eq. (22), one can square both

sides of the equation and arrange it in the form of a quadratic equation,

2 bprffm.at_C= 0ap_n + (24)

where

a = 1-_ [erf-t(P)]2 [ )] , /32, b=-2/3- erf-l(P 2 c= (25)
n //

Similarly to solve for Pm_x, one can repeat the same procedure to produce

2 +bpm_x+c=Oap,_ (26)

with the same coefficients a, b, and c. The implication of this fact is that the solutions for

P,_n and Pm_x are simply

-b - "x/b 2 - 4ac -b + "x/b 2 - 4acPrmn = min
2a 2a

(27)

18



-b - _Jb 2 - 4ac -b + _/b 2 - 4ac ]P_x = max 2a ' 2a
(28)

These are the bounds on the actual underlying probability p of exceeding a certain limit

subject to a confidence level specified by P, i.e., Pr_. <p < Pm_x" The bounds are

computed based on an estimated value of the probability of exceeding the limit. This is a

key result.

Thus for any number of Monte Carlo runs conducted and any confidence level

desired, the lower and upper limits p=, and Pr_x within which the actual underlying

probability p must lie become known once an estimated value /3 is obtained according to

Eq. (6) or (7). Figure 4 shows the upper and lower limits that bound the actual underlying

probabilities at 95.5% confidence level as a function of the estimated probability obtained

from 1000 Monte Carlo runs. The fact that the bounds on p are based on /3 and /3 is

practically always in error (sometimes substantially so for a "small" finite n) does not imply

that the bounds are in error. Indeed the above analysis has shown that for a given the

number of Monte Carlo runs and the confidence level desired, the bounds on p will be

correct irrespective of what /3 turns out to be. For example, with 1000 Monte Carlo runs,

suppose that the estimated probability of exceeding a certain limit turns out to be 1%, then it

can be stated with 95.5% confidence that the true probability of the process lie between

0.5% and 1.8%. This is a rigorous result in the sense that the statement can be made with

100% certainty (without error) even if the upper and lower bounds are computed from

/3 = 1% which is only an estimated value. The width of this bound ( P,_x - Pm_,) can be

narrowed at the expense of additional Monte Carlo runs or lowering the confidence level.

With 10000 Monte Carlo runs, an estimated probability of 1% implies that the true

probability lies between 0.8% and 1.2% with the same confidence level. If one reduces the
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confidencelevel to 68.3% thenwith the sameestimatedprobability of 10% it can be

concluded that the true probability lies between 0.9% and 1.1%.

We have established the bounds on the underlying probability p of exceeding a

certain limit based on an estimated probability/3 of exceeding that limit from n Monte Carlo

runs. Since the actual bounds on p depends on /3, it is practically certain that a different

bound will be obtained if we are to conduct another n Monte Carlo runs. Different bounds

obtained from two different sets of n Monte Carlo runs must be consistent in that the true

underlying probability p must lie within both bounds. In general, if one carries out n

Monte Carlo runs g times then, the bounds can be narrowed further by taking the

intersection of the previous bounds, i.e.,

Pn_n = rnaY_n(l) n(2) n(t) "_""_t/" mJn ' Umin _" "" '/_min J

' (I) n(_) ]_p_ = mm{pm_ ,_2__/_ max _ • • • _ F- ri,hlx j

Alternatively, one can compute an average limit-exceeding probability from the g sets, i.e.,

and then the probability bounds associated with this averaged result for ng Monte Carlo

runs.

In the above analysis, the number of uncertain parameters clearly did not enter the

arguments leading to Eqs. (27) and (28) that establish the lower and upper bounds on the

actual underlying probability at a specified confidence level. This rather counter-intuitive

assertion can be understood by realizing that the shape of the binomial distribution is
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completelydeterminedby the numberof Monte Carlo runs and the actual (or true)

underlyingprobabilityregardlessof thenumberof uncertainparameters.Theestablished

limits given in Eqs. (27) and (28) merelybound the true probability without implying

whereit is likely to beplacedwithin thesebounds. Thenumberof uncertainparameters

doesinfluencetheresult in the sensethattheyaffect therelativeplacementof theactual

probability within thesebounds,but not the bounds themselves. As an illustration,

considerthecasewhere1000Monte-Carlorunsareconductedfrom which anestimated

probabilityof 10%is obtained.Subjectto auser-specifiedlevelof confidence,say99.9%,

it canbesaidthatthetrueprobabilityis boundedbelowby 7.3%andaboveby 13.6%. If

theproblemhasonly afew numberof uncertainparametersthenit is morelikely thatthe

estimatedprobabilityiscloseto thetrueanswer,or equivalentlythetrueprobabilityis close

to theaverageof theupperandlower limits, or 10.4%. Ontheotherhand,if thenumber

of uncertainparametersis large,thenthesamelimits still applybutnowit is lesslikely that

the trueprobability is closeto the averageof thetwo limits, or 10.4%. In fact, thetrue

probability might very well be closerto the lower limit of 7.3%,or the upper limit of

10.4%becausetheestimatedprobability is morelikely to bescatteredfrom its truevalue.

This increaseor decreasein thedegreeof uncertaintyof thetrueprobability relativeto the

averageof thetwo limits is themechanismby which thenumberof uncertainparameters

affectthe interpretationof theresults.Fortunately,however,it is importantto realizethatit

doesnot affecttheactualboundson thetrueprobabilityestablishedinEqs.(27)and(28).

Further Discussion and Extensions

We have discussed a number of basic elements that will contribute to the prediction

of expected vibration levels of a flexible structure in the presence of stochastic modeling

uncertainties. The structure is subjected to persistent or periodic disturbance sources. The

most critical factor in this analysis is the number of runs needed to gather statistics from

which conclusions can be drawn. However, by exploiting the feature of the binomial
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distribution governingthe uncertaintiesof the estimates, definite statements about the

empirical results can be made rigorously. These types of analysis have been utilized

extensively in such diverse applications as opinion surveys and quality control where

definite probability conclusions can be drawn based on a small number of samples. Also,

in the interest of computation efforts, customized solutions can be devised so that any

duplication in the computation can be avoided. For example, for a large dimensional

system, if the uncertainties in the design model are limited to a certain number of modes

then it is only necessary to compute the contribution of these uncertain modes on the overall

solution. Also, in addition to the theoretical results presented here, various indicators can

be developed to monitor and verify the convergence of the solution so that it is not

necessary to continue the sampling if a point of diminishing return has been reached.

The above analysis provides a prediction on the statistics and associated confidence

statements of the expected performance for a particular limit on the response. One can

repeat the same analysis on several different limits which are not necessarily the real

threshold limits to arrive at a much more general set of results. For example, we can obtain

information such as the probability of the vibration amplitude exceeding 1 unit is 50%, but

the probability of exceeding 2 units is 10%, and the probability of exceeding 3 units is only

1%, etc.., each with each own error bounds. Furthermore, up to this point we have only

discussed the maximum amplitudes of the dynamic responses based on a number of runs.

In fact, there are more available information from each run than just the maximum

amplitude. Statistical analysis and prediction can be carried out to analyze this information

which is already available and no additional Monte Carlo runs are needed. Therefore, the

additional computation cost to analyze this information is relatively minimal compared with

the amount of useful information it returns.
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Illustrative Example

To illustrate an application of the stochastic estimation procedure the following

example is used. Figure 5 shows a two degree-of-freedom flexible system with eight

parameters (two masses, three springs, and three dashpots) all of which are assumed to be

uncertain. The system is known to be disturbed by a periodic forcing input at the first

mass, u(t) = sin(t), and we are interested in estimating the amplitude of the steady-state

vibration at the second mass. Each uncertain parameter is assumed to follow a (normal)

Gaussian distribution, with mean value m_ =m---2 =1, kl =k'2 =k'3 =1, and

_l = _2 = _3 = 0.1. For simplicity, the distribution is taken to be finite and each parameter is

allowed to vary up to _+50% around the

Ak I =Ak 2 =Ak 3=0.5, Ac l=Ac 2 =Ac 3=0.05.

vary according to the rule

mean value, i.e., Am t = Am 2 =0.5,

For example, the first mass is allowed to

where _ - Am t < m t < _ + Am_, z is a normally distributed random number with mean 0

and standard deviation 1, and the extrema are taken to be four times the standard deviation

of the distribution. Figures 6 and 7 show the results obtained with 102, 103 , 104, and 105

Monte Carlo runs. From each set of Monte Carlo runs, a record of 102, 103 , 104, and 105

amplitudes of the steady-state responses is recorded for analysis. The left figures show the

(estimated) probability density function from the raw data as shown in Eq. (4) from which

the corresponding cumulative distribution functions (not shown here) are computed from

Eq. (5). These results are then used to compute the estimated limit-exceeding probabilities

given by Eq. (7) as shown on the right figures. Based on the estimated limit-exceeding

probabilities and the number of Monte Carlo runs, we can compute the maximum and

minimum bounds on the actual or true underlying limit-exceeding probabilities for any
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levelof confidencedesiredusingEqs.(27)and(28). Theseboundsarealsoshownon the

right figuresof 17-18for a99.9%confidencelevelalthoughtheycanbecomputedfor any

confidencelevelsjust aseasily. Forexample,with 100MonteCarloruns,onecanestimate

thelimit-exceedingprobabilitiesasshownin thetoprightof Fig. 6. Althoughtheestimates

arenotcorrect,wecanneverthelessestablishthatthereis a99.9%probability thatthetrue

limit-exceedingprobabilitieswill notexceedtheestimatedprobabilitiesby approximately

+ 10% (the exact values varies according to/3 according to Eqs. (27) and (28) as plotted in

the figure). With more Monte Carlo runs, the bounds can be narrowed down substantially

as each successive bounds are nested within the previous bounds. Note that the actual

width of the bounds (Pmax - PmJn) depends on the estimated probabilities as shown in Fig.

4. The width is the largest at /3 = 0.5 and the smallest at /3 = 0 or 1 representing the

smallest accuracy level that can be ascertained with the number of Monte Carlo runs

evaluated. This measure is comparable to the "resolution" of this estimation method by

statistical sampling. With 104 Monte Carlo runs, this "resolution" is O. 1%, and with 105

runs, it is 0.01%. These limits are computed with a 99.9% confidence level (P = 0.999).

If one is willing to reduce the confidence level then this resolution can be narrowed further.

For example, in the case of l0 s Monte Carlo runs, it is 0.003% for a 90% confidence

level.

The same statistical estimation procedure can be used to estimate other effects due to

the specified variations in the uncertain parameters other than the amplitudes of the steady-

state response. For example we may be interested in the distribution of the natural

frequencies or the damping factors as a result of the uncertainty in the physical parameters.

Such results are shown in Fig. 8 for the estimated frequency distribution and in Fig. 9 for

the damping factor distribution of the first mode obtained with 10000 Monte Carlo runs.

More importantly, we can also compute the upper and lower limits that bound the actual

probabilities underlying the process for any level of confidence desired. These bounds are
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shownin Figs. 8-9 for a 99.9%confidencelevel. This kind of information is useful to

designrobustcontrollersor to estimatethe likelihood that certainperiodic disturbance

sourcesmaycausethesystemto vibratein resonance.

Concluding Remarks

From the point of view of the control system designer, given the statistics of the

uncertain parameters, he or she wishes to know the statistics of the expected performance,

say in keeping the vibration within a certain range when the system is affected by a

disturbance source. Since the relationship between a particular variation in the design

model and the response of the system is quite complicated, it is extremely difficult to

quantify the affect analytically. What is needed is a flexible approach that can handle these

types of question naturally without imposing a lot of unrealistic conditions for the sake of

mathematical simplification. In this approach, through the sampling process, the stochastic

estimation problem is converted into a probability and statistics problem where there are

well-established theoretical results and useful applications. The price to pay for the

flexibilities of the method and the type of direct and intuitively appealing answers it

provides is computational cost, which should become less expensive over time as faster

processors are available. At the present time a typical workstation is adequate for most

applications. In this research, we have adapted this statistical approach to estimate the

limit-exceeding probabilities of the dynamic response when uncertainties in the analysis

model are specified probabilistically. Starting with the estimated probabilities obtained

from a number of Monte Carlo runs, it is possible to obtain bounds on the actual

underlying probability for any level of confidence desired. By using a Gaussian

approximation to the binomial distribution, this research provides analytical expressions for

such bounds as well as those describing the precise trade-off between the number of Monte

Carlo runs conducted, the accuracy of the estimation, and the level of confidence desired.
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Notethatthebinomialdistributiongovernsthestatisticsof aBernoullivariabledescribing

anoutcomewhichcanbecharacterizedasasuccessor a failure. This is preciselythecase

wherewe areinterestedin whetheror not thevibrationexceedaparticular level, or the

system natural frequency fall within a certain range, etc .... This is to be distinguished from

the final distribution of the probabilities exceeding various different levels which need not

be Gaussian such as the one shown in Fig. 18. Likewise, the statistics of the uncertain

variables does not have to be Gaussian, either. A numerical example has been shown to

illustrate an application of the stochastic estimation procedure.

The statistical sampling process considered here assumes that the distributions of

the uncertain parameters are known or can be assumed before hand. It remains to examine

the sensitivities of such an assumption on the final results. Also, the analysis has shown

that the resolution of the results depends on the number of Monte Carlo runs conducted.

For example, if such a resolution is 0.01%, this sampling method can only establish that

the probability of the vibration level exceeding say 10 units or more is 0.01%. In practice,

if it can be assumed that the distributions of the uncertain parameters are finite, then it is

possible to establish the maximum possible amplitude that can occur. This statistical

procedure together with an optimization method such as genetic algorithm can further

establish a bound on the actual maximum amplitude itself in addition to a bound on the

actual probability of such an occurrence as done here. Finally, it is possible to speed up

the computation by discretization, i.e., allowing the uncertain parameters to take only

distinct values. The considerations mentioned here remain to be examined in further

details.
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Figure 5: A two-degree-of-freedom system with eight uncertain parameters
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at 99.9% confidence level obtained with 10000 and 100000 Monte Carlo runs
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at 99.9% confidence level obtained with 1000 Monte Carlo runs
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